## May 2022 - Higher Tier Solutions

${ }^{\text {st }}$
$M=2(10)-3(-4)^{2}=20-3(16)=20-48=-28$

## $2^{\text {nd }}$

$p=\frac{3 r^{2}-n}{5}$
$5 p=3 r^{2}-n$
$5 p+n=3 r^{2}$
$\frac{5 p+n}{3}=r^{2}$
$r= \pm \sqrt{\frac{5 p+n}{3}}$

## $3^{\text {rd }}$

$\frac{1}{6 x^{2}+5 x-4} \div \frac{1}{9 x^{2}-16}$
$\frac{1}{(3 x+4)(2 x-1)} \div \frac{1}{(3 x+4)(3 x-4)}$
$\frac{1}{(3 x+4)(2 x-1)} \times \frac{(3 x+4)(3 x-4)}{1}=\frac{3 x-4}{2 x-1} \quad a=3, \quad b=-4, \quad c=2, \quad d=-1$

## $4^{\text {th }}$

$32^{1-x}=8^{3 x+5}$
$\left(2^{5}\right)^{1-x}=\left(2^{3}\right)^{3 x+5}$
$2^{5-5 x}=2^{9 x+15}$
$5-5 x=9 x+15$
$5=14 x+15$
$-10=14 x$
$-\frac{10}{14}=x\left(-\frac{5}{7}\right)$

## $5^{\text {th }}$

$r=\frac{3 m-5}{7-2 m}$
$r(7-2 m)=3 m-5$
$7 r-2 m r=3 m-5$
$7 r+5=3 m+2 m r$
$7 r+5=m(3+2 r)$
$m=\frac{7 r+5}{3+2 r}$

## $6^{\text {th }}$

$32.715 \leq c<32.725$
$3205 \leq d<3215$
$\frac{32.715}{\sqrt{3215}}<b<\frac{32.725}{\sqrt{3205}}$
$0.576974<b<0.5780503$
$b=0.58$ (2 s.f.)
After this the two values differ
$7^{\text {th }} / 8^{\text {th }}$
36 cm
$15^{2}+36^{2}=y^{2}$
$225+1296=y^{2}$
$1521=y^{2}$
$y=39 \mathrm{~cm}$

$x \quad$| 2 |
| :--- | :--- |

$x^{2}+39^{2}=45^{2}$
$x^{2}=504$
$x=6 \sqrt{14} \mathrm{~cm}$ or 22.45 cm

## 9th

(a) $65: 180$
$1: \frac{36}{13}(1: 2.769)$
(b) Length $=90 \times \frac{36}{13}=\frac{3240}{13} \mathrm{~cm}$ or 249.23 cm

## $10^{\text {th }}$

$4 \times 10 \times 10 \times 2=800$
$11^{\text {th }}$
$\binom{3 a+5}{5 b}+\binom{2 b-1}{5-4 a}=\binom{9}{52}$
$3 a+2 b=5$ (1)
$-4 a+5 b=47$ (2)
(1) $\times 4$
(2) $x-3$
$12 a+8 b=20$ (3)
$12 a-15 b=-141$
(3) - (4)
$23 b=161 \quad b=7$
Sub b = 7 into ( 1 )
$3 a+14=5$
$3 a=-9$
$a=-3$

## $12^{\text {th }}$

$225792 \div 1.12^{2}=180,000$

## $13^{\text {th }}$

a) $P(R)=n / n+9$
b) $3 n^{2}-25 n-88=0$
$P(R \cap R)=\frac{n}{n+9} \times \frac{(n-1)}{n+8}=\frac{11}{38}$
$(3 n+8)(n-11)=0$
$n=-8 / 3 \quad n=11$

$$
\begin{aligned}
& \frac{n^{2}-n}{n^{2}+7 n+58}=\frac{11}{38} \\
& 38 n^{2}-38 n=11 n^{2}+187 n+792 \\
& 27 n^{2}-225 n-792=0 \quad(\div 9) \\
& 3 n^{2}-25 n-88=0
\end{aligned}
$$

$$
n \text { han to be }+2 \text { whole } \operatorname{son} n=11
$$

11 red 9 white 20 in total.
$14^{\text {th }} / 15^{\text {th }}$


$$
\begin{aligned}
& 20^{2}+7^{2}=y^{2} \\
& y=\sqrt{449}
\end{aligned}
$$

$\tan x=\frac{\sqrt{449}}{15}$
$x=54.7^{\circ}$

## $16^{\text {th }}$

$m_{L_{1}}=\frac{20-4}{6--14}=\frac{16}{20}=\frac{4}{5}$
$m_{L_{2}}=-\frac{5}{4}$
Midpoint of $A B=(-4,12)$
$y=-\frac{5}{4} x+c$
$12=-\left(\frac{5}{4}\right)(-4)+c$
$12=5+c \quad c=7$
$y=-\frac{5}{4} x+7$

## 17 ${ }^{\text {th }}$

(a)
$5(3 x+1)+2(5-2 x)=15 x+5+10-4 x=11 x+15$
(b)
$(x+9)(2 x-3)=2 x^{2}+12 x-27$

## $18^{\text {th }}$

$12000 \times M^{3}=9345$
$\mathrm{M}^{3}=0.77875$
$M=0.92$
$X=8 \%$
19th


20th

| 6 painters | $=4$ days | $=12$ rooms (inverse proportion) |
| :--- | :--- | :--- |
| 3 painters $=$ | 8 days | $=12 \mathrm{rooms}$ (direct proportion) |
| 3 painters $=10$ days | $=15 \mathrm{rooms}$ |  |

## 21 ${ }^{\text {st }} /$ 22nd $^{\text {nd }}$

(a) $x^{3}-3 x-42=0$
$f(x)=x^{3}-3 x-42$
$f(3)=27-9-42=-24$
$f(4)=64-12-42=10$
Change of sign so solution between 3 and 4
(b)
$x^{3}-3 x=42$
$x\left(x^{2}\right)=42+3 x$
$x^{2}=\frac{42+3 x}{x}$
$x=\sqrt{\frac{42+3 x}{x}}$
(c)
$x_{0}=3.5$
$x_{1}=\sqrt{15}$
$x_{2}=3.7208$
$x_{3}=3.78$

## 23 ${ }^{\text {rd }}$

$P\left(R R^{\prime} R^{\prime}\right)=\frac{7}{16} \times \frac{9}{15} \times \frac{8}{14}=\frac{504}{3360}$
$P($ one red $)=3 \times \frac{504}{3360}=\frac{1512}{3360}$

## $24^{\text {th }}$



ABD $=44$ (opposite angles in cyclic quadrilateral add to 180)
$A B C=90$ (angle in a semi-circle is a right angle)
$C B F=90-44=46$
$B C F=68$ (alternate angles are equal)
$C F B=180-68-46=66$ (angles in a triangle add to 180)

## 25 ${ }^{\text {th }}$

Swimming $=\frac{2}{1.4}=\frac{10}{7} \mathrm{hr}$
Running $=\frac{5}{6} h r$
Cycling $=\frac{20}{15}=\frac{4}{3} h r$
Total Time $=\frac{10}{7}+\frac{5}{6}+\frac{4}{3}=\frac{151}{42} \mathrm{hr}=3 \mathrm{~h} 36 \mathrm{~m}$

(a)

Both share angle BAC
$A D E=A B C$ (corresponding angles)
AED = ACB (corresponding angles)
All three angles are same in both triangles therefore they are similar.
(b) Scale Factor $=\frac{15}{12}=\frac{5}{4}$

Let $\mathrm{AD}=x \quad \mathrm{AB}=x+5$
$4 x+20=5 x \quad x=20$
$A B=25 \mathrm{~cm}$
$27^{\text {th }}$
Ann $=x$
Ben $=3 x$
Chris $=3 x-7$
Denise $=x+13$
$3 x-7=x+13$
$2 x-7=13$
$2 x=20$
$x=10$
Ann $=10$, Ben $=30$, Chris and Denise $=23$ Total $=86$
28th $/ 29^{\text {th }}$

| Time (s) | Frequency |
| :---: | :---: |
| $10<\mathrm{t} \leqslant 25$ | 12 |
| $25<\mathrm{t} \leqslant 35$ | 28 |
| $35<\mathrm{t} \leqslant 40$ | 42 |
| $40<\mathrm{t} \leqslant 45$ | $\mathbf{3 0}$ |
| $45<\mathrm{t} \leqslant 60$ | 9 |



Median $=61^{\text {st }}$ time
In $35<t \leq 40$ group
21 into this group - halfway so median $=37.5$ seconds

$$
\begin{aligned}
& y=2 x+3-11 \\
& x^{2}+(2 x+3)^{2}=18 \\
& x^{2}+4 x^{2}+12 x+9-18=0 \\
& 5 x^{2}+12 x-9=0 \\
& (5 x-3)(x+3)=0 \\
& \binom{x=3 / 5}{y=22}\binom{x=-3}{y=-3}
\end{aligned}
$$

$31^{\text {st }}$


$$
\begin{aligned}
& h^{2}+9^{2}=12^{2} \\
& h=144-81=63 \\
& h=\sqrt{63} \\
& \text { Area }=\frac{1}{2}(18+27)(\sqrt{63})=178.6 \mathrm{~cm}^{2}
\end{aligned}
$$

